ID-002 Protocol Specification Rev.1

<table>
<thead>
<tr>
<th>Approved</th>
<th>Checked</th>
<th>Prepared</th>
</tr>
</thead>
</table>

PRELIMINARY
1. **Overview**

This ID-002 specification is the pulse I/F for EBA-3x series.

Input x 1 line, Output x 1 line are prepared for both EBA-3x and Host Controller.

EBA-3x sends the pulses of accepted banknote from its output line to the Host Controller.

Host Controller sends signals to the EBA-3x input line to control the operation of EBA-3x series.

2. **Connection and Active**

CPU Board CN2 Connector, Pin No. 5 OUT (Output line from EBA-3x), Low active

CPU Board CN2 Connector, Pin No. 7 IN (Input line to EBA-3x), Low active

3. **Pulse Width**

Four different settings are possible with Dip Switch 2 No.5 and 6

<table>
<thead>
<tr>
<th>No.5</th>
<th>No.6</th>
<th>Pulse Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>150ms / 180ms</td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>80ms / 120ms</td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>50ms / 50ms</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>50ms / 300ms</td>
</tr>
</tbody>
</table>

(Example) No.5 ON, No.6 OFF

![Diagram of pulse width](image)

80ms  120ms

4. **Number of Pulses**

Four different settings are possible with Dip Switch 2 No.7 and 8

(Example: Czech Koruna)

<table>
<thead>
<tr>
<th>No.7</th>
<th>No.8</th>
<th>No. of Pulse</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>50 Kr / Pulse</td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>10 Kr / Pulse</td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>5 Kr / Pulse</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>2.5 Kr / Pulse</td>
</tr>
</tbody>
</table>

(Example) No.7 ON, No.8 OFF (10 Kr / Pulse)

50 Koruna = 5 pulses
100 Koruna = 10 pulses
200 Koruna = 20 pulses
500 Koruna = 50 pulses
1000 Koruna = 100 pulses
2000 Koruna = 200 pulses
5000 Koruna = 500 pulses
5. Timing Chart

5-1 Accept Banknote

- Pin No.7 IN
- Pin No.5 OUT

Idling Status  Banknote insertion / Transport
  => Validation complete
  => Passing through PB
  => PB operation complete

Output of Credit Pulse

Banknote transported to the stacker
  => Banknote stacking complete

4-2. Accept Disable

- Pin No.7 IN
- Pin No.5 OUT

Idling status

Acceptor operation is disabled
It does not take banknote when the banknote is inserted

4-3. Return Banknote

- Pin No.7 IN
- Pin No.5 OUT

Idling status  Banknote insertion
  => Banknote transport
  (disable signal was input when the banknote is in returnable position)

Rejecting banknote
  => The rejected banknote is removed

Acceptor is in disabled status
4-4. When the Acceptor is disabled after the banknote is validated

Pin No.7 IN

Pin No.5 OUT

Idling Status

Banknote insertion / Transport

=> Validation complete

=> Passing through PB
(Disable signal is input while the banknote is passing through PB)

=> PB operation complete

Output of credit pulses

Acceptor is in disabled status

Acceptor is transported to the stacker unit => The banknote stacking complete